Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Transfer (1708.05629v1)

Published 18 Aug 2017 in cs.AI, cs.LG, and stat.ML

Abstract: Transfer learning borrows knowledge from a source domain to facilitate learning in a target domain. Two primary issues to be addressed in transfer learning are what and how to transfer. For a pair of domains, adopting different transfer learning algorithms results in different knowledge transferred between them. To discover the optimal transfer learning algorithm that maximally improves the learning performance in the target domain, researchers have to exhaustively explore all existing transfer learning algorithms, which is computationally intractable. As a trade-off, a sub-optimal algorithm is selected, which requires considerable expertise in an ad-hoc way. Meanwhile, it is widely accepted in educational psychology that human beings improve transfer learning skills of deciding what to transfer through meta-cognitive reflection on inductive transfer learning practices. Motivated by this, we propose a novel transfer learning framework known as Learning to Transfer (L2T) to automatically determine what and how to transfer are the best by leveraging previous transfer learning experiences. We establish the L2T framework in two stages: 1) we first learn a reflection function encrypting transfer learning skills from experiences; and 2) we infer what and how to transfer for a newly arrived pair of domains by optimizing the reflection function. Extensive experiments demonstrate the L2T's superiority over several state-of-the-art transfer learning algorithms and its effectiveness on discovering more transferable knowledge.

Citations (27)

Summary

We haven't generated a summary for this paper yet.