Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Localization transition induced by learning in random searches (1708.05614v2)

Published 18 Aug 2017 in cond-mat.stat-mech and q-bio.NC

Abstract: We solve an adaptive search model where a random walker or L\'evy flight stochastically resets to previously visited sites on a $d$-dimensional lattice containing one trapping site. Due to reinforcement, a phase transition occurs when the resetting rate crosses a threshold above which non-diffusive stationary states emerge, localized around the inhomogeneity. The threshold depends on the trapping strength and on the walker's return probability in the memoryless case. The transition belongs to the same class as the self-consistent theory of Anderson localization. These results show that similarly to many living organisms and unlike the well-studied Markovian walks, non-Markov movement processes can allow agents to learn about their environment and promise to bring adaptive solutions in search tasks.

Summary

We haven't generated a summary for this paper yet.