Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Mean and Median Criterion for Automatic Kernel Bandwidth Selection for Support Vector Data Description (1708.05106v2)

Published 16 Aug 2017 in cs.LG, cs.AI, and stat.ML

Abstract: Support vector data description (SVDD) is a popular technique for detecting anomalies. The SVDD classifier partitions the whole space into an inlier region, which consists of the region near the training data, and an outlier region, which consists of points away from the training data. The computation of the SVDD classifier requires a kernel function, and the Gaussian kernel is a common choice for the kernel function. The Gaussian kernel has a bandwidth parameter, whose value is important for good results. A small bandwidth leads to overfitting, and the resulting SVDD classifier overestimates the number of anomalies. A large bandwidth leads to underfitting, and the classifier fails to detect many anomalies. In this paper we present a new automatic, unsupervised method for selecting the Gaussian kernel bandwidth. The selected value can be computed quickly, and it is competitive with existing bandwidth selection methods.

Citations (30)

Summary

We haven't generated a summary for this paper yet.