Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On multivariate trace inequalities of Sutter, Berta and Tomamichel (1708.04836v1)

Published 16 Aug 2017 in math-ph, math.MP, and quant-ph

Abstract: We consider a family of multivariate trace inequalities recently derived by Sutter, Berta and Tomamichel. These inequalities generalize the Golden-Thompson inequality and Lieb's three-matrix inequality to an arbitrary number of matrices in a way that features complex matrix powers. We show that their inequalities can be rewritten as an $n$-matrix generalization of Lieb's original three-matrix inequality. The complex matrix powers are replaced by resolvents and appropriate maximally entangled states. We expect that the technically advantageous properties of resolvents, in particular for perturbation theory, can be of use in applications of the $n$-matrix inequalities, e.g., for analyzing the rotated Petz recovery map in quantum information theory.

Summary

We haven't generated a summary for this paper yet.