Papers
Topics
Authors
Recent
2000 character limit reached

Regression estimator for the tail index

Published 16 Aug 2017 in stat.ME, math.ST, and stat.TH | (1708.04815v3)

Abstract: Estimating the tail index parameter is one of the primal objectives in extreme value theory. For heavy-tailed distributions the Hill estimator is the most popular way to estimate the tail index parameter. Improving the Hill estimator was aimed by recent works with different methods, for example by using bootstrap, or Kolmogorov-Smirnov metric. These methods are asymptotically consistent, but for tail index $\xi >1$ and smaller sample sizes the estimation fails to approach the theoretical value for realistic sample sizes. In this paper, we introduce a new empirical method, which can estimate high tail index parameters well and might also be useful for relatively small sample sizes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.