Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Modeling Methods for Complex System with Separable Features (1708.04583v1)

Published 5 Aug 2017 in cs.NE

Abstract: Data-driven modeling plays an increasingly important role in different areas of engineering. For most of existing methods, such as genetic programming (GP), the convergence speed might be too slow for large scale problems with a large number of variables. Fortunately, in many applications, the target models are separable in some sense. In this paper, we analyze different types of separability of some real-world engineering equations and establish a mathematical model of generalized separable system (GS system). In order to get the structure of the GS system, two concepts, namely block and factor are introduced, and a special method, block and factor detection is also proposed, in which the target model is decomposed into a number of blocks, further into minimal blocks and factors. Compare to the conventional GP, the new method can make large reductions to the search space. The minimal blocks and factors are optimized and assembled with a global optimization search engine, low dimensional simplex evolution (LDSE). An extensive study between the proposed method and a state-of-the-art data-driven fitting tool, Eureqa, has been presented with several man-made problems. Test results indicate that the proposed method is more effective and efficient under all the investigated cases.

Citations (3)

Summary

We haven't generated a summary for this paper yet.