Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sensitivity analysis of Burgers' equation with shocks (1708.04332v4)

Published 14 Aug 2017 in math.NA and cs.NA

Abstract: Generalized polynomial chaos (gPC) method has been extensively used in uncertainty quantification problems where equations contain random variables. For gPC to achieve high accuracy, PDE solutions need to have high regularity in the random space, but this is what hyperbolic type problems cannot provide. We provide a counter-argument in this paper, and show that even though the solution profile develops singularities in the random space, which destroys the spectral accuracy of gPC, the physical quantities (such as the shock emergence time, the shock location, and the shock strength) are all smooth functions of the uncertainties coming from both initial data and the wave speed: with proper shifting, the solution's polynomial interpolation approximates the real solution accurately, and the error decays as the order of the polynomial increases. Therefore this work provides a new perspective to "quantify uncertainties" and significantly improves the accuracy of the gPC method with a slight reformulation. We use the Burgers' equation as an example for the thorough analysis, and the analysis could be extended to general conservation laws with convex fluxes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Qin Li (179 papers)
  2. Jian-Guo Liu (153 papers)
  3. Ruiwen Shu (28 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.