Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assentication: User Deauthentication and Lunchtime Attack Mitigation with Seated Posture Biometric (1708.03978v1)

Published 14 Aug 2017 in cs.CR

Abstract: Biometric techniques are often used as an extra security factor in authenticating human users. Numerous biometrics have been proposed and evaluated, each with its own set of benefits and pitfalls. Static biometrics (such as fingerprints) are geared for discrete operation, to identify users, which typically involves some user burden. Meanwhile, behavioral biometrics (such as keystroke dynamics) are well suited for continuous, and sometimes more unobtrusive, operation. One important application domain for biometrics is deauthentication, a means of quickly detecting absence of a previously authenticated user and immediately terminating that user's active secure sessions. Deauthentication is crucial for mitigating so called Lunchtime Attacks, whereby an insider adversary takes over (before any inactivity timeout kicks in) authenticated state of a careless user who walks away from her computer. Motivated primarily by the need for an unobtrusive and continuous biometric to support effective deauthentication, we introduce PoPa, a new hybrid biometric based on a human user's seated posture pattern. PoPa captures a unique combination of physiological and behavioral traits. We describe a low cost fully functioning prototype that involves an office chair instrumented with 16 tiny pressure sensors. We also explore (via user experiments) how PoPa can be used in a typical workplace to provide continuous authentication (and deauthentication) of users. We experimentally assess viability of PoPa in terms of uniqueness by collecting and evaluating posture patterns of a cohort of users. Results show that PoPa exhibits very low false positive, and even lower false negative, rates. In particular, users can be identified with, on average, 91.0% accuracy. Finally, we compare pros and cons of PoPa with those of several prominent biometric based deauthentication techniques.

Citations (16)

Summary

We haven't generated a summary for this paper yet.