Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Prediction for Additive Function-on-Function Regression (1708.03372v2)

Published 10 Aug 2017 in math.ST and stat.TH

Abstract: As with classic statistics, functional regression models are invaluable in the analysis of functional data. While there are now extensive tools with accompanying theory available for linear models, there is still a great deal of work to be done concerning nonlinear models for functional data. In this work we consider the Additive Function-on-Function Regression model, a type of nonlinear model that uses an additive relationship between the functional outcome and functional covariate. We present an estimation methodology built upon Reproducing Kernel Hilbert Spaces, and establish optimal rates of convergence for our estimates in terms of prediction error. We also discuss computational challenges that arise with such complex models, developing a representer theorem for our estimate as well as a more practical and computationally efficient approximation. Simulations and an application to Cumulative Intraday Returns around the 2008 financial crisis are also provided.

Summary

We haven't generated a summary for this paper yet.