Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On degenerations of projective varieties to complexity-one T-varieties (1708.02698v5)

Published 9 Aug 2017 in math.AG and math.AC

Abstract: Let $R$ be a positively graded finitely generated $\textbf{k}$-domain with Krull dimension $d+1$. We show that there is a homogeneous valuation $\mathfrak{v}: R \setminus {0} \to \mathbb{Z}d$ of rank $d$ such that the associated graded $\text{gr}_\mathfrak{v}(R)$ is finitely generated. This then implies that any polarized $d$-dimensional projective variety $X$ has a flat deformation over $\mathbb{A}1$, with reduced and irreducible fibers, to a polarized projective complexity-one $T$-variety (i.e. a variety with a faithful action of a $(d-1)$-dimensional torus $T$). As an application we conclude that any $d$-dimensional complex smooth projective variety $X$ equipped with an integral K\"ahler form has a proper $(d-1)$-dimensional Hamiltonian torus action on an open dense subset that extends continuously to all of $X$.

Summary

We haven't generated a summary for this paper yet.