Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online unit clustering in higher dimensions (1708.02662v3)

Published 8 Aug 2017 in cs.CG

Abstract: We revisit the online Unit Clustering and Unit Covering problems in higher dimensions: Given a set of $n$ points in a metric space, that arrive one by one, Unit Clustering asks to partition the points into the minimum number of clusters (subsets) of diameter at most one; while Unit Covering asks to cover all points by the minimum number of balls of unit radius. In this paper, we work in $\mathbb{R}d$ using the $L_\infty$ norm. We show that the competitive ratio of any online algorithm (deterministic or randomized) for Unit Clustering must depend on the dimension $d$. We also give a randomized online algorithm with competitive ratio $O(d2)$ for Unit Clustering of integer points (i.e., points in $\mathbb{Z}d$, $d\in \mathbb{N}$, under $L_{\infty}$ norm). We show that the competitive ratio of any deterministic online algorithm for Unit Covering is at least $2d$. This ratio is the best possible, as it can be attained by a simple deterministic algorithm that assigns points to a predefined set of unit cubes. We complement these results with some additional lower bounds for related problems in higher dimensions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.