Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Effective Feature Selection Method Based on Pair-Wise Feature Proximity for High Dimensional Low Sample Size Data (1708.02443v1)

Published 8 Aug 2017 in cs.CV

Abstract: Feature selection has been studied widely in the literature. However, the efficacy of the selection criteria for low sample size applications is neglected in most cases. Most of the existing feature selection criteria are based on the sample similarity. However, the distance measures become insignificant for high dimensional low sample size (HDLSS) data. Moreover, the variance of a feature with a few samples is pointless unless it represents the data distribution efficiently. Instead of looking at the samples in groups, we evaluate their efficiency based on pairwise fashion. In our investigation, we noticed that considering a pair of samples at a time and selecting the features that bring them closer or put them far away is a better choice for feature selection. Experimental results on benchmark data sets demonstrate the effectiveness of the proposed method with low sample size, which outperforms many other state-of-the-art feature selection methods.

Citations (17)

Summary

We haven't generated a summary for this paper yet.