Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ordered multiplicity inverse eigenvalue problem for graphs on six vertices (1708.02438v2)

Published 8 Aug 2017 in math.CO

Abstract: For a graph $G$, we associate a family of real symmetric matrices, $\mathcal{S}(G)$, where for any $M \in \mathcal{S}(G)$, the location of the nonzero off-diagonal entries of $M$ are governed by the adjacency structure of $G$. The ordered multiplicity Inverse Eigenvalue Problem of a Graph (IEPG) is concerned with finding all attainable ordered lists of eigenvalue multiplicities for matrices in $\mathcal{S}(G)$. For connected graphs of order six, we offer significant progress on the IEPG, as well as a complete solution to the ordered multiplicity IEPG. We also show that while $K_{m,n}$ with $\min(m,n)\ge 3$ attains a particular ordered multiplicity list, it cannot do so with arbitrary spectrum.

Summary

We haven't generated a summary for this paper yet.