Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Quality Assessment Techniques Show Improved Training and Evaluation of Autoencoder Generative Adversarial Networks (1708.02237v1)

Published 6 Aug 2017 in cs.CV and cs.LG

Abstract: We propose a training and evaluation approach for autoencoder Generative Adversarial Networks (GANs), specifically the Boundary Equilibrium Generative Adversarial Network (BEGAN), based on methods from the image quality assessment literature. Our approach explores a multidimensional evaluation criterion that utilizes three distance functions: an $l_1$ score, the Gradient Magnitude Similarity Mean (GMSM) score, and a chrominance score. We show that each of the different distance functions captures a slightly different set of properties in image space and, consequently, requires its own evaluation criterion to properly assess whether the relevant property has been adequately learned. We show that models using the new distance functions are able to produce better images than the original BEGAN model in predicted ways.

Citations (7)

Summary

We haven't generated a summary for this paper yet.