Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Coburn-Simonenko theorem for Toeplitz operators acting between Hardy type subspaces of different Banach function spaces (1708.01475v1)

Published 4 Aug 2017 in math.FA

Abstract: Let $\Gamma$ be a rectifiable Jordan curve, let $X$ and $Y$ be two reflexive Banach function spaces over $\Gamma$ such that the Cauchy singular integral operator $S$ is bounded on each of them, and let $M(X,Y)$ denote the space of pointwise multipliers from $X$ to $Y$. Consider the Riesz projection $P=(I+S)/2$, the corresponding Hardy type subspaces $PX$ and $PY$, and the Toeplitz operator $T(a):PX\to PY$ defined by $T(a)f=P(af)$ for a symbol $a\in M(X,Y)$. We show that if $X\hookrightarrow Y$ and $a\in M(X,Y)\setminus{0}$, then $T(a)\in\mathcal{L}(PX,PY)$ has a trivial kernel in $PX$ or a dense image in $PY$. In particular, if $1<q\le p<\infty$, $1/r=1/q-1/p$, and $a\in L{r}\equiv M(Lp,Lq)$ is a nonzero function, then the Toeplitz operator $T(a)$, acting from the Hardy space $Hp$ to the Hardy space $Hq$, has a trivial kernel in $Hp$ or a dense image in $Hq$.

Summary

We haven't generated a summary for this paper yet.