Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Low-rank Spline Approximation of Planar Domains (1708.01347v1)

Published 4 Aug 2017 in cs.CG and math.NA

Abstract: Construction of spline surfaces from given boundary curves is one of the classical problems in computer aided geometric design, which regains much attention in isogeometric analysis in recent years and is called domain parameterization. However, for most of the state-of-the-art parameterization methods, the rank of the spline parameterization is usually large, which results in higher computational cost in solving numerical PDEs. In this paper, we propose a low-rank representation for the spline parameterization of planar domains using low-rank tensor approximation technique, and apply quasi-conformal map as the framework of the spline parameterization. Under given correspondence of boundary curves, a quasi-conformal map with low rank and low distortion between a unit square and the computational domain can be modeled as a non-linear optimization problem. We propose an efficient algorithm to compute the quasi-conformal map by solving two convex optimization problems alternatively. Experimental results show that our approach can produce a bijective and low-rank parametric spline representation of planar domains, which results in better performance than previous approaches in solving numerical PDEs.

Summary

We haven't generated a summary for this paper yet.