Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Compute Modulo Prime-Power Sums ? (1708.00665v1)

Published 2 Aug 2017 in cs.IT and math.IT

Abstract: A new class of structured codes called Quasi Group Codes (QGC) is introduced. A QGC is a subset of a group code. In contrast with group codes, QGCs are not closed under group addition. The parameters of the QGC can be chosen such that the size of $\mathcal{C}+\mathcal{C}$ is equal to any number between $|\mathcal{C}|$ and $|\mathcal{C}|2$. We analyze the performance of a specific class of QGCs. This class of QGCs is constructed by assigning single-letter distributions to the indices of the codewords in a group code. Then, the QGC is defined as the set of codewords whose index is in the typical set corresponding to these single-letter distributions. The asymptotic performance limits of this class of QGCs is characterized using single-letter information quantities. Corresponding covering and packing bounds are derived. It is shown that the point-to-point channel capacity and optimal rate-distortion function are achievable using QGCs. Coding strategies based on QGCs are introduced for three fundamental multi-terminal problems: the K\"orner-Marton problem for modulo prime-power sums, computation over the multiple access channel (MAC), and MAC with distributed states. For each problem a single-letter achievable rate-region is derived. It is shown, through examples, that the coding strategies improve upon the previous strategies based on unstructured codes, linear codes and group codes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.