Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

A posteriori error estimation for finite element approximations of a PDE-constrained optimization problem in fluid dynamics (1708.00590v1)

Published 2 Aug 2017 in math.NA

Abstract: We derive globally reliable a posteriori error estimators for a PDE-constrained optimization problem involving linear models in fluid dynamics as state equation; control constraints are also considered. The corresponding local error indicators are locally efficient. The assumptions under which we perform the analysis are such that they can be satisfied for a wide variety of stabilized finite element methods as well as for standard finite element methods. When stabilized methods are considered, no a priori relation between the stabilization terms for the state and adjoint equations is required. If a lower bound for the inf-sup constant is available, a posteriori error estimators that are fully computable and provide guaranteed upper bounds on the norm of the error can be obtained. We illustrate the theory with numerical examples.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.