Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Importance sampling large deviations in nonequilibrium steady states. I (1708.00459v2)

Published 1 Aug 2017 in cond-mat.stat-mech, cond-mat.soft, and physics.chem-ph

Abstract: Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states, and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult, because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

Summary

We haven't generated a summary for this paper yet.