Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Method and Regularized MLE Are Both Optimal for Top-$K$ Ranking (1707.09971v3)

Published 31 Jul 2017 in stat.ML, cs.IT, cs.LG, math.IT, math.ST, and stat.TH

Abstract: This paper is concerned with the problem of top-$K$ ranking from pairwise comparisons. Given a collection of $n$ items and a few pairwise comparisons across them, one wishes to identify the set of $K$ items that receive the highest ranks. To tackle this problem, we adopt the logistic parametric model --- the Bradley-Terry-Luce model, where each item is assigned a latent preference score, and where the outcome of each pairwise comparison depends solely on the relative scores of the two items involved. Recent works have made significant progress towards characterizing the performance (e.g. the mean square error for estimating the scores) of several classical methods, including the spectral method and the maximum likelihood estimator (MLE). However, where they stand regarding top-$K$ ranking remains unsettled. We demonstrate that under a natural random sampling model, the spectral method alone, or the regularized MLE alone, is minimax optimal in terms of the sample complexity --- the number of paired comparisons needed to ensure exact top-$K$ identification, for the fixed dynamic range regime. This is accomplished via optimal control of the entrywise error of the score estimates. We complement our theoretical studies by numerical experiments, confirming that both methods yield low entrywise errors for estimating the underlying scores. Our theory is established via a novel leave-one-out trick, which proves effective for analyzing both iterative and non-iterative procedures. Along the way, we derive an elementary eigenvector perturbation bound for probability transition matrices, which parallels the Davis-Kahan $\sin\Theta$ theorem for symmetric matrices. This also allows us to close the gap between the $\ell_2$ error upper bound for the spectral method and the minimax lower limit.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuxin Chen (195 papers)
  2. Jianqing Fan (165 papers)
  3. Cong Ma (74 papers)
  4. Kaizheng Wang (34 papers)
Citations (111)

Summary

We haven't generated a summary for this paper yet.