Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pointwise estimates of solutions to nonlinear equations for nonlocal operators (1707.09596v2)

Published 30 Jul 2017 in math.AP

Abstract: We study pointwise behavior of positive solutions to nonlinear integral equations, and related inequalities, of the type \begin{equation*} u(x) - \int_\Omega G(x, y) \, g(u(y)) d \sigma (y) = h, \end{equation*} where $(\Omega, \sigma)$ is a locally compact measure space, $G(x, y)\colon \Omega\times \Omega \to [0, +\infty]$ is a kernel, $h \ge 0$ is a measurable function, and $g\colon [0, \infty)\to [0, \infty)$ is a monotone function. This problem is motivated by the semilinear fractional Laplace equation \begin{equation*} (-\Delta){\frac{\alpha}{2}} u - g(u) \sigma = \mu \quad \text{in} \, \, \Omega, \quad u=0 \, \, \, \text{in} \, \, \Omegac, \end{equation*} with measure coefficients $\sigma$, $\mu$, where $g(u)=uq$, $q \in \mathbb{R} \setminus{0}$, and $0<\alpha<n$, in domains $\Omega \subseteq\mathbb{R}n$, or Riemannian manifolds, with positive Green's function $G$.

Summary

We haven't generated a summary for this paper yet.