Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blow-up for semilinear damped wave equations with sub-Strauss exponent in the scattering case (1707.09583v3)

Published 30 Jul 2017 in math.AP

Abstract: It is well-known that the critical exponent for semilinear damped wave equations is Fujita exponent when the damping is effective. Lai, Takamura and Wakasa in 2017 have obtained a blow-up result not only for super-Fujita exponent but also for the one closely related to Strauss exponent when the damping is scaling invariant and its constant is relatively small,which has been recently extended by Ikeda and Sobajima. Introducing a multiplier for the time-derivative of the spatial integral of unknown functions, we succeed in employing the technics on the analysis for semilinear wave equations and proving a blow-up result for semilinear damped wave equations with sub-Strauss exponent when the damping is in the scattering range.

Summary

We haven't generated a summary for this paper yet.