Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Group Re-Identification via Unsupervised Transfer of Sparse Features Encoding (1707.09173v1)

Published 28 Jul 2017 in cs.CV

Abstract: Person re-identification is best known as the problem of associating a single person that is observed from one or more disjoint cameras. The existing literature has mainly addressed such an issue, neglecting the fact that people usually move in groups, like in crowded scenarios. We believe that the additional information carried by neighboring individuals provides a relevant visual context that can be exploited to obtain a more robust match of single persons within the group. Despite this, re-identifying groups of people compound the common single person re-identification problems by introducing changes in the relative position of persons within the group and severe self-occlusions. In this paper, we propose a solution for group re-identification that grounds on transferring knowledge from single person re-identification to group re-identification by exploiting sparse dictionary learning. First, a dictionary of sparse atoms is learned using patches extracted from single person images. Then, the learned dictionary is exploited to obtain a sparsity-driven residual group representation, which is finally matched to perform the re-identification. Extensive experiments on the i-LIDS groups and two newly collected datasets show that the proposed solution outperforms state-of-the-art approaches.

Citations (48)

Summary

We haven't generated a summary for this paper yet.