Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Aesthetics in Photography using Deep Convolutional Neural Networks (1707.08985v2)

Published 27 Jul 2017 in cs.CV

Abstract: Evaluating aesthetic value of digital photographs is a challenging task, mainly due to numerous factors that need to be taken into account and subjective manner of this process. In this paper, we propose to approach this problem using deep convolutional neural networks. Using a dataset of over 1.7 million photos collected from Flickr, we train and evaluate a deep learning model whose goal is to classify input images by analysing their aesthetic value. The result of this work is a publicly available Web-based application that can be used in several real-life applications, e.g. to improve the workflow of professional photographers by pre-selecting the best photos.

Citations (5)

Summary

We haven't generated a summary for this paper yet.