Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Categorical Webs and $S$-duality in 4d $\mathcal{N}=2$ QFT (1707.08981v1)

Published 27 Jul 2017 in hep-th, math-ph, math.MP, and math.RT

Abstract: We review the categorical approach to the BPS sector of a 4d $\mathcal{N}=2$ QFT, clarifying many tricky issues and presenting a few novel results. To a given $\mathcal{N}=2$ QFT one associates several triangle categories: they describe various kinds of BPS objects from different physical viewpoints (e.g. IR versus UV). These diverse categories are related by a web of exact functors expressing physical relations between the various objects/pictures. A basic theme of this review is the emphasis on the full web of categories, rather than on what we can learn from a single description. A second general theme is viewing the cluster category as a sort of `categorification' of 't Hooft's theory of quantum phases for a 4d non-Abelian gauge theory. The $S$-duality group is best described as the auto-equivalences of the full web of categories. This viewpoint leads to a combinatorial algorithm to search for $S$-dualities of the given $\mathcal{N}=2$ theory. If the ranks of the gauge and flavor groups are not too big, the algorithm may be effectively run on a laptop. This viewpoint also leads to a clearer view of $3d$ mirror symmetry. For class $\mathcal{S}$ theories, all the relevant triangle categories may also be constructed in terms of geometric objects on the Gaiotto curve, and we present the dictionary between triangle categories and the WKB approach of GMN. We also review how the VEV's of UV line operators are related to cluster characters.

Summary

We haven't generated a summary for this paper yet.