Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduction of Overfitting in Diabetes Prediction Using Deep Learning Neural Network (1707.08386v1)

Published 26 Jul 2017 in cs.CV

Abstract: Augmented accuracy in prediction of diabetes will open up new frontiers in health prognostics. Data overfitting is a performance-degrading issue in diabetes prognosis. In this study, a prediction system for the disease of diabetes is pre-sented where the issue of overfitting is minimized by using the dropout method. Deep learning neural network is used where both fully connected layers are fol-lowed by dropout layers. The output performance of the proposed neural network is shown to have outperformed other state-of-art methods and it is recorded as by far the best performance for the Pima Indians Diabetes Data Set.

Citations (85)

Summary

We haven't generated a summary for this paper yet.