Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A law of large numbers for branching Markov processes by the ergodicity of ancestral lineages (1707.07993v4)

Published 25 Jul 2017 in math.PR

Abstract: We are interested in the dynamic of a structured branching population where the trait of each individual moves according to a Markov process. The rate of division of each individual is a function of its trait and when a branching event occurs, the trait of a descendant at birth depends on the trait of the mother. We prove a law of large numbers for the empirical distribution of ancestral trajectories. It ensures that the empirical measure converges to the mean value of the spine which is a time-inhomogeneous Markov process describing the trait of a typical individual along its ancestral lineage. Our approach relies on ergodicity arguments for this time-inhomogeneous Markov process. We apply this technique on the example of a size-structured population with exponential growth in varying environment.

Summary

We haven't generated a summary for this paper yet.