Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyperbolic Representation Learning for Fast and Efficient Neural Question Answering (1707.07847v3)

Published 25 Jul 2017 in cs.IR and cs.CL

Abstract: The dominant neural architectures in question answer retrieval are based on recurrent or convolutional encoders configured with complex word matching layers. Given that recent architectural innovations are mostly new word interaction layers or attention-based matching mechanisms, it seems to be a well-established fact that these components are mandatory for good performance. Unfortunately, the memory and computation cost incurred by these complex mechanisms are undesirable for practical applications. As such, this paper tackles the question of whether it is possible to achieve competitive performance with simple neural architectures. We propose a simple but novel deep learning architecture for fast and efficient question-answer ranking and retrieval. More specifically, our proposed model, \textsc{HyperQA}, is a parameter efficient neural network that outperforms other parameter intensive models such as Attentive Pooling BiLSTMs and Multi-Perspective CNNs on multiple QA benchmarks. The novelty behind \textsc{HyperQA} is a pairwise ranking objective that models the relationship between question and answer embeddings in Hyperbolic space instead of Euclidean space. This empowers our model with a self-organizing ability and enables automatic discovery of latent hierarchies while learning embeddings of questions and answers. Our model requires no feature engineering, no similarity matrix matching, no complicated attention mechanisms nor over-parameterized layers and yet outperforms and remains competitive to many models that have these functionalities on multiple benchmarks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yi Tay (94 papers)
  2. Luu Anh Tuan (55 papers)
  3. Siu Cheung Hui (30 papers)
Citations (110)