Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Two-Weight Inequality for the Poisson Operator in the Bessel Setting (1707.07492v2)

Published 24 Jul 2017 in math.AP

Abstract: Fix $\lambda>0$. Consider the Bessel operator $\Delta_\lambda:=-\frac{d2}{dx2}-\frac{2\lambda}{x}\frac d{dx}$ on $\mathbb{R}+:=(0,\infty)$ and the harmonic conjugacy introduced by Muckenhoupt and Stein. We provide the two-weight inequality for the Poisson operator $\mathsf{P}{[\lambda]}_t=e{-t\sqrt{\Delta\lambda}}$ in this Bessel setting. In particular, we prove that for a measure $\mu$ on $\mathbb{R}2_{+,+}:=(0,\infty)\times (0,\infty)$ and $\sigma$ on $\mathbb{R}+$: $$ |\mathsf{P}{[\lambda]}\sigma(f)|{L2(\mathbb{R}2{+,+};\mu)} \lesssim |f|{L2(\mathbb{R}+;\sigma)}, $$ if and only if testing conditions hold for the the Poisson operator and its adjoint. Further, the norm of the operator is shown to be equivalent to the best constant in the testing conditions.

Summary

We haven't generated a summary for this paper yet.