Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An energy method for rough partial differential equations (1707.07470v2)

Published 24 Jul 2017 in math.AP and math.PR

Abstract: We present a well-posedness and stability result for a class of nondegenerate linear parabolic equations driven by rough paths. More precisely, we introduce a notion of weak solution that satisfies an intrinsic formulation of the equation in a suitable Sobolev space of negative order. Weak solutions are then shown to satisfy the corresponding energy estimates which are deduced directly from the equation. Existence is obtained by showing compactness of a suitable sequence of approximate solutions whereas uniqueness relies on a doubling of variables argument and a careful analysis of the passage to the diagonal. Our result is optimal in the sense that the assumptions on the deterministic part of the equation as well as the initial condition are the same as in the classical PDEs theory.

Summary

We haven't generated a summary for this paper yet.