Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combinatorial Multi-armed Bandit with Probabilistically Triggered Arms: A Case with Bounded Regret (1707.07443v1)

Published 24 Jul 2017 in cs.LG and stat.ML

Abstract: In this paper, we study the combinatorial multi-armed bandit problem (CMAB) with probabilistically triggered arms (PTAs). Under the assumption that the arm triggering probabilities (ATPs) are positive for all arms, we prove that a class of upper confidence bound (UCB) policies, named Combinatorial UCB with exploration rate $\kappa$ (CUCB-$\kappa$), and Combinatorial Thompson Sampling (CTS), which estimates the expected states of the arms via Thompson sampling, achieve bounded regret. In addition, we prove that CUCB-$0$ and CTS incur $O(\sqrt{T})$ gap-independent regret. These results improve the results in previous works, which show $O(\log T)$ gap-dependent and $O(\sqrt{T\log T})$ gap-independent regrets, respectively, under no assumptions on the ATPs. Then, we numerically evaluate the performance of CUCB-$\kappa$ and CTS in a real-world movie recommendation problem, where the actions correspond to recommending a set of movies, the arms correspond to the edges between the movies and the users, and the goal is to maximize the total number of users that are attracted by at least one movie. Our numerical results complement our theoretical findings on bounded regret. Apart from this problem, our results also directly apply to the online influence maximization (OIM) problem studied in numerous prior works.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. A. Ömer Sarıtaç (1 paper)
  2. Cem Tekin (47 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.