Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contrastive-center loss for deep neural networks (1707.07391v2)

Published 24 Jul 2017 in cs.CV

Abstract: The deep convolutional neural network(CNN) has significantly raised the performance of image classification and face recognition. Softmax is usually used as supervision, but it only penalizes the classification loss. In this paper, we propose a novel auxiliary supervision signal called contrastivecenter loss, which can further enhance the discriminative power of the features, for it learns a class center for each class. The proposed contrastive-center loss simultaneously considers intra-class compactness and inter-class separability, by penalizing the contrastive values between: (1)the distances of training samples to their corresponding class centers, and (2)the sum of the distances of training samples to their non-corresponding class centers. Experiments on different datasets demonstrate the effectiveness of contrastive-center loss.

Citations (70)

Summary

We haven't generated a summary for this paper yet.