Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limit fluctuations for density of asymmetric simple exclusion processes with open boundaries (1707.07350v4)

Published 23 Jul 2017 in math.PR

Abstract: We investigate the fluctuations of cumulative density of particles in the asymmetric simple exclusion process with respect to the stationary distribution (also known as the steady state), as a stochastic process indexed by $[0,1]$. In three phases of the model and their boundaries within the fan region, we establish a complete picture of the scaling limits of the fluctuations of the density as the number of sites goes to infinity. In the maximal current phase, the limit fluctuation is the sum of two independent processes, a Brownian motion and a Brownian excursion. This extends an earlier result by Derrida et al. (2004) for totally asymmetric simple exclusion process in the same phase. In the low/high density phases, the limit fluctuations are Brownian motion. Most interestingly, at the boundary of the maximal current phase, the limit fluctuation is the sum of two independent processes, a Brownian motion and a Brownian meander (or a time-reversal of the latter, depending on the side of the boundary). Our proofs rely on a representation of the joint generating function of the asymmetric simple exclusion process with respect to the stationary distribution in terms of joint moments of a Markov processes, which is constructed from orthogonality measures of the Askey--Wilson polynomials.

Summary

We haven't generated a summary for this paper yet.