Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Warped Riemannian metrics for location-scale models (1707.07163v1)

Published 22 Jul 2017 in math.ST and stat.TH

Abstract: The present paper shows that warped Riemannian metrics, a class of Riemannian metrics which play a prominent role in Riemannian geometry, are also of fundamental importance in information geometry. Precisely, the paper features a new theorem, which states that the Rao-Fisher information metric of any location-scale model, defined on a Riemannian manifold, is a warped Riemannian metric, whenever this model is invariant under the action of some Lie group. This theorem is a valuable tool in finding the expression of the Rao-Fisher information metric of location-scale models defined on high-dimensional Riemannian manifolds. Indeed, a warped Riemannian metric is fully determined by only two functions of a single variable, irrespective of the dimension of the underlying Riemannian manifold. Starting from this theorem, several original contributions are made. The expression of the Rao-Fisher information metric of the Riemannian Gaussian model is provided, for the first time in the literature. A generalised definition of the Mahalanobis distance is introduced, which is applicable to any location-scale model defined on a Riemannian manifold. The solution of the geodesic equation is obtained, for any Rao-Fisher information metric defined in terms of warped Riemannian metrics. Finally, using a mixture of analytical and numerical computations, it is shown that the parameter space of the von Mises-Fisher model of $n$-dimensional directional data, when equipped with its Rao-Fisher information metric, becomes a Hadamard manifold, a simply-connected complete Riemannian manifold of negative sectional curvature, for $n = 2,\ldots,8$. Hopefully, in upcoming work, this will be proved for any value of $n$.

Summary

We haven't generated a summary for this paper yet.