Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Sentiment-and-Semantics-Based Approach for Emotion Detection in Textual Conversations (1707.06996v4)

Published 21 Jul 2017 in cs.CL

Abstract: Emotions are physiological states generated in humans in reaction to internal or external events. They are complex and studied across numerous fields including computer science. As humans, on reading "Why don't you ever text me!" we can either interpret it as a sad or angry emotion and the same ambiguity exists for machines. Lack of facial expressions and voice modulations make detecting emotions from text a challenging problem. However, as humans increasingly communicate using text messaging applications, and digital agents gain popularity in our society, it is essential that these digital agents are emotion aware, and respond accordingly. In this paper, we propose a novel approach to detect emotions like happy, sad or angry in textual conversations using an LSTM based Deep Learning model. Our approach consists of semi-automated techniques to gather training data for our model. We exploit advantages of semantic and sentiment based embeddings and propose a solution combining both. Our work is evaluated on real-world conversations and significantly outperforms traditional Machine Learning baselines as well as other off-the-shelf Deep Learning models.

Citations (77)

Summary

We haven't generated a summary for this paper yet.