Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Nearest Neighbor Preserving Embeddings (1707.06867v1)

Published 21 Jul 2017 in cs.DS

Abstract: We show an analog to the Fast Johnson-Lindenstrauss Transform for Nearest Neighbor Preserving Embeddings in $\ell_2$. These are sparse, randomized embeddings that preserve the (approximate) nearest neighbors. The dimensionality of the embedding space is bounded not by the size of the embedded set n, but by its doubling dimension {\lambda}. For most large real-world datasets this will mean a considerably lower-dimensional embedding space than possible when preserving all distances. The resulting embeddings can be used with existing approximate nearest neighbor data structures to yield speed improvements.

Summary

We haven't generated a summary for this paper yet.