Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graphical posterior predictive classifier: Bayesian model averaging with particle Gibbs (1707.06792v4)

Published 21 Jul 2017 in stat.ML

Abstract: In this study, we present a multi-class graphical Bayesian predictive classifier that incorporates the uncertainty in the model selection into the standard Bayesian formalism. For each class, the dependence structure underlying the observed features is represented by a set of decomposable Gaussian graphical models. Emphasis is then placed on the Bayesian model averaging which takes full account of the class-specific model uncertainty by averaging over the posterior graph model probabilities. An explicit evaluation of the model probabilities is well known to be infeasible. To address this issue, we consider the particle Gibbs strategy of Olsson et al. (2018b) for posterior sampling from decomposable graphical models which utilizes the Christmas tree algorithm of Olsson et al. (2018a) as proposal kernel. We also derive a strong hyper Markov law which we call the hyper normal Wishart law that allow to perform the resultant Bayesian calculations locally. The proposed predictive graphical classifier reveals superior performance compared to the ordinary Bayesian predictive rule that does not account for the model uncertainty, as well as to a number of out-of-the-box classifiers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.