Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-Scale Goodness Polarity Lexicons for Community Question Answering (1707.06378v1)

Published 20 Jul 2017 in cs.CL

Abstract: We transfer a key idea from the field of sentiment analysis to a new domain: community question answering (cQA). The cQA task we are interested in is the following: given a question and a thread of comments, we want to re-rank the comments so that the ones that are good answers to the question would be ranked higher than the bad ones. We notice that good vs. bad comments use specific vocabulary and that one can often predict the goodness/badness of a comment even ignoring the question, based on the comment contents only. This leads us to the idea to build a good/bad polarity lexicon as an analogy to the positive/negative sentiment polarity lexicons, commonly used in sentiment analysis. In particular, we use pointwise mutual information in order to build large-scale goodness polarity lexicons in a semi-supervised manner starting with a small number of initial seeds. The evaluation results show an improvement of 0.7 MAP points absolute over a very strong baseline and state-of-the art performance on SemEval-2016 Task 3.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Todor Mihaylov (23 papers)
  2. Daniel Belchev (1 paper)
  3. Yasen Kiprov (5 papers)
  4. Ivan Koychev (33 papers)
  5. Preslav Nakov (253 papers)
Citations (8)