Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constructing Permutation Rational Functions From Isogenies (1707.06134v1)

Published 13 Jul 2017 in math.NT, cs.CR, and math.AG

Abstract: A permutation rational function $f\in \mathbb{F}_q(x)$ is a rational function that induces a bijection on $\mathbb{F}_q$, that is, for all $y\in\mathbb{F}_q$ there exists exactly one $x\in\mathbb{F}_q$ such that $f(x)=y$. Permutation rational functions are intimately related to exceptional rational functions, and more generally exceptional covers of the projective line, of which they form the first important example. In this paper, we show how to efficiently generate many permutation rational functions over large finite fields using isogenies of elliptic curves, and discuss some cryptographic applications. Our algorithm is based on Fried's modular interpretation of certain dihedral exceptional covers of the projective line (Cont. Math., 1994).

Summary

We haven't generated a summary for this paper yet.