Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probably approximate Bayesian computation: nonasymptotic convergence of ABC under misspecification (1707.05987v2)

Published 19 Jul 2017 in math.ST, cs.LG, stat.CO, and stat.TH

Abstract: Approximate Bayesian computation (ABC) is a widely used inference method in Bayesian statistics to bypass the point-wise computation of the likelihood. In this paper we develop theoretical bounds for the distance between the statistics used in ABC. We show that some versions of ABC are inherently robust to misspecification. The bounds are given in the form of oracle inequalities for a finite sample size. The dependence on the dimension of the parameter space and the number of statistics is made explicit. The results are shown to be amenable to oracle inequalities in parameter space. We apply our theoretical results to given prior distributions and data generating processes, including a non-parametric regression model. In a second part of the paper, we propose a sequential Monte Carlo (SMC) to sample from the pseudo-posterior, improving upon the state of the art samplers.

Citations (8)

Summary

We haven't generated a summary for this paper yet.