Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Robustness and Asymptotic Properties for Maximum Likelihood Estimators of Parameters in Exponential Power and its Scale Mixture Form Distributions (1707.05857v1)

Published 18 Jul 2017 in math.ST and stat.TH

Abstract: The normality assumption on data set is very restrictive approach for modelling. The generalized form of normal distribution, named as an exponential power (EP) distribution, and its scale mixture form have been considered extensively to overcome the problem for modelling non-normal data set since last decades. However, examining the robustness properties of maximum likelihood (ML) estimators of parameters in these distributions, such as the in uence function, gross-error sensitivity, breakdown point and information-standardized sensitivity, has not been considered together. The well-known asymptotic properties of ML estimators of location, scale and added skewness parameters in EP and its scale mixture form distributions are studied and also these ML estimators for location, scale and scale variant (skewness) parameters can be represented as an iterative reweighting algorithm to compute the estimates of these parameters simultaneously.

Summary

We haven't generated a summary for this paper yet.