Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subgroup Balancing Propensity Score (1707.05835v1)

Published 18 Jul 2017 in stat.ME

Abstract: We investigate the estimation of subgroup treatment effects with observational data. Existing propensity score matching and weighting methods are mostly developed for estimating overall treatment effect. Although the true propensity score should balance covariates for the subgroup populations, the estimated propensity score may not balance covariates for the subgroup samples. We propose the subgroup balancing propensity score (SBPS) method, which selects, for each subgroup, to use either the overall sample or the subgroup sample to estimate propensity scores for units within that subgroup, in order to optimize a criterion accounting for a set of covariate-balancing conditions for both the overall sample and the subgroup samples. We develop a stochastic search algorithm for the estimation of SBPS when the number of subgroups is large. We demonstrate through simulations that the SBPS can improve the performance of propensity score matching in estimating subgroup treatment effects. We then apply the SBPS method to data from the Italy Survey of Household Income and Wealth (SHIW) to estimate the treatment effects of having debit card on household consumption for different income groups.

Summary

We haven't generated a summary for this paper yet.