Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Armed Bandit Approach for Online Expert Selection in Markov Decision Processes (1707.05714v1)

Published 18 Jul 2017 in cs.SY

Abstract: We formulate a multi-armed bandit (MAB) approach to choosing expert policies online in Markov decision processes (MDPs). Given a set of expert policies trained on a state and action space, the goal is to maximize the cumulative reward of our agent. The hope is to quickly find the best expert in our set. The MAB formulation allows us to quantify the performance of an algorithm in terms of the regret incurred from not choosing the best expert from the beginning. We first develop the theoretical framework for MABs in MDPs, and then present a basic regret decomposition identity. We then adapt the classical Upper Confidence Bounds algorithm to the problem of choosing experts in MDPs and prove that the expected regret grows at worst at a logarithmic rate. Lastly, we validate the theory on a small MDP.

Citations (8)

Summary

We haven't generated a summary for this paper yet.