Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Axiomatizability of the Multiplicative Theory of Numbers (1707.04732v5)

Published 15 Jul 2017 in math.LO and cs.LO

Abstract: The multiplicative theory of a set of numbers (which could be natural, integer, rational, real or complex numbers) is the first-order theory of the structure of that set with (solely) the multiplication operation (that set is taken to be multiplicative, i.e., closed under multiplication). In this paper we study the multiplicative theories of the complex, real and (positive) rational numbers. These theories (and also the multiplicative theories of natural and integer numbers) are known to be decidable (i.e., there exists an algorithm that decides whether a given sentence is derivable form the theory); here we present explicit axiomatizations for them and show that they are not finitely axiomatizable. For each of these sets (of complex, real and [positive] rational numbers) a language, including the multiplication operation, is introduced in a way that it allows quantifier elimination (for the theory of that set).

Citations (4)

Summary

We haven't generated a summary for this paper yet.