Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Performance of Forecasting Models in the Presence of Input Uncertainty (1707.04692v1)

Published 15 Jul 2017 in stat.ML

Abstract: Nowadays, with the unprecedented penetration of renewable distributed energy resources (DERs), the necessity of an efficient energy forecasting model is more demanding than before. Generally, forecasting models are trained using observed weather data while the trained models are applied for energy forecasting using forecasted weather data. In this study, the performance of several commonly used forecasting methods in the presence of weather predictors with uncertainty is assessed and compared. Accordingly, both observed and forecasted weather data are collected, then the influential predictors for solar PV generation forecasting model are selected using several measures. Using observed and forecasted weather data, an analysis on the uncertainty of weather variables is represented by MAE and bootstrapping. The energy forecasting model is trained using observed weather data, and finally, the performance of several commonly used forecasting methods in solar energy forecasting is simulated and compared for a real case study.

Citations (15)

Summary

We haven't generated a summary for this paper yet.