Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lacunary Eta-quotients Modulo Powers of Primes (1707.04627v2)

Published 14 Jul 2017 in math.NT

Abstract: An integral power series is called lacunary modulo $M$ if almost all of its coefficients are divisible by $M$. Motivated by the parity problem for the partition function, $p(n)$, Gordon and Ono studied the generating functions for $t$-regular partitions, and determined conditions for when these functions are lacunary modulo powers of primes. We generalize their results in a number of ways by studying infinite products called Dedekind eta-quotients and generalized Dedekind eta-quotients. We then apply our results to the generating functions for the partition functions considered by Nekrasov, Okounkov, and Han.

Summary

We haven't generated a summary for this paper yet.