2000 character limit reached
On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers
Published 14 Jul 2017 in math.NT | (1707.04451v1)
Abstract: For finite sums of non-negative powers of arithmetic progressions the generating functions (ordinary and exponential ones) for given powers are computed. This leads to a two parameter generalization of Stirling and Eulerian numbers. A direct generalization of Bernoulli numbers and their polynomials follows. On the way to find the Faulhaber formula for these sums of powers in terms of generalized Bernoulli polynomials one is led to a one parameter generalization of Bernoulli numbers and their polynomials. Generalized Lah numbers are also considered.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.