Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On (Anti)Conditional Independence in Dempster-Shafer Theory (1707.04277v1)

Published 13 Jul 2017 in cs.AI

Abstract: This paper verifies a result of {Shenoy:94} concerning graphoidal structure of Shenoy's notion of independence for Dempster-Shafer theory of belief functions. Shenoy proved that his notion of independence has graphoidal properties for positive normal valuations. The requirement of strict positive normal valuations as prerequisite for application of graphoidal properties excludes a wide class of DS belief functions. It excludes especially so-called probabilistic belief functions. It is demonstrated that the requirement of positiveness of valuation may be weakened in that it may be required that commonality function is non-zero for singleton sets instead, and the graphoidal properties for independence of belief function variables are then preserved. This means especially that probabilistic belief functions with all singleton sets as focal points possess graphoidal properties for independence.

Summary

We haven't generated a summary for this paper yet.