Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Language-based Abstractions for Dynamical Systems (1707.04254v1)

Published 13 Jul 2017 in cs.MS and cs.PF

Abstract: Ordinary differential equations (ODEs) are the primary means to modelling dynamical systems in many natural and engineering sciences. The number of equations required to describe a system with high heterogeneity limits our capability of effectively performing analyses. This has motivated a large body of research, across many disciplines, into abstraction techniques that provide smaller ODE systems while preserving the original dynamics in some appropriate sense. In this paper we give an overview of a recently proposed computer-science perspective to this problem, where ODE reduction is recast to finding an appropriate equivalence relation over ODE variables, akin to classical models of computation based on labelled transition systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.