Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-Tuning in the Context of Bayesian Theory Testing (1707.03965v1)

Published 13 Jul 2017 in physics.hist-ph

Abstract: Fine-tuning in physics and cosmology is often used as evidence that a theory is incomplete. For example, the parameters of the standard model of particle physics are "unnaturally" small (in various technical senses), which has driven much of the search for physics beyond the standard model. Of particular interest is the fine-tuning of the universe for life, which suggests that our universe's ability to create physical life forms is improbable and in need of explanation, perhaps by a multiverse. This claim has been challenged on the grounds that the relevant probability measure cannot be justified because it cannot be normalized, and so small probabilities cannot be inferred. We show how fine-tuning can be formulated within the context of Bayesian theory testing (or \emph{model selection}) in the physical sciences. The normalizability problem is seen to be a general problem for testing any theory with free parameters, and not a unique problem for fine-tuning. Physical theories in fact avoid such problems in one of two ways. Dimensional parameters are bounded by the Planck scale, avoiding troublesome infinities, and we are not compelled to assume that dimensionless parameters are distributed uniformly, which avoids non-normalizability.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com